haiku/headers/private/net/ProtocolUtilities.h
Augustin Cavalier 73eb03214e net/ProtocolUtilities: Return EOPNOTSUPP when unhandled flags are specified.
Same as has already been done for UNIX domain sockets and TCP
(this is used in the implementation of UDP.)
2023-11-22 11:40:02 -05:00

388 lines
8.2 KiB
C++

/*
* Copyright 2007-2013, Haiku, Inc. All Rights Reserved.
* Distributed under the terms of the MIT License.
*
* Authors:
* Hugo Santos, hugosantos@gmail.com
*/
#ifndef PROTOCOL_UTILITIES_H
#define PROTOCOL_UTILITIES_H
#include <lock.h>
#include <Select.h>
#include <util/AutoLock.h>
#include <util/DoublyLinkedList.h>
#include <AddressUtilities.h>
#include <net_buffer.h>
#include <net_protocol.h>
#include <net_socket.h>
#include <net_stack.h>
class MutexLocking {
public:
typedef mutex Type;
typedef MutexLocker AutoLocker;
static status_t Init(mutex* lock, const char* name)
{ mutex_init_etc(lock, name, MUTEX_FLAG_CLONE_NAME); return B_OK; }
static void Destroy(mutex* lock) { mutex_destroy(lock); }
static status_t Lock(mutex* lock) { return mutex_lock(lock); }
static status_t Unlock(mutex* lock) { mutex_unlock(lock); return B_OK; }
};
extern net_buffer_module_info* gBufferModule;
extern net_stack_module_info* gStackModule;
class NetModuleBundleGetter {
public:
static net_stack_module_info* Stack() { return gStackModule; }
static net_buffer_module_info* Buffer() { return gBufferModule; }
};
class ProtocolSocket {
public:
ProtocolSocket(net_socket* socket);
status_t Open();
SocketAddress LocalAddress()
{ return SocketAddress(
fDomain->address_module,
&fSocket->address); }
ConstSocketAddress LocalAddress() const
{ return ConstSocketAddress(
fDomain->address_module,
&fSocket->address); }
SocketAddress PeerAddress()
{ return SocketAddress(
fDomain->address_module,
&fSocket->peer); }
ConstSocketAddress PeerAddress() const
{ return ConstSocketAddress(
fDomain->address_module,
&fSocket->peer); }
net_domain* Domain() const { return fDomain; }
net_address_module_info* AddressModule() const
{ return fDomain->address_module; }
net_socket* Socket() const { return fSocket; }
protected:
net_socket* fSocket;
net_domain* fDomain;
};
inline
ProtocolSocket::ProtocolSocket(net_socket* socket)
:
fSocket(socket),
fDomain(NULL)
{
}
inline status_t
ProtocolSocket::Open()
{
fDomain = fSocket->first_protocol->module->get_domain(
fSocket->first_protocol);
if (fDomain == NULL || fDomain->address_module == NULL)
return EAFNOSUPPORT;
return B_OK;
}
template<typename LockingBase = MutexLocking,
typename ModuleBundle = NetModuleBundleGetter>
class DatagramSocket : public ProtocolSocket {
public:
DatagramSocket(const char* name,
net_socket* socket);
virtual ~DatagramSocket();
status_t InitCheck() const;
status_t Enqueue(net_buffer* buffer);
status_t EnqueueClone(net_buffer* buffer);
status_t Dequeue(uint32 flags, net_buffer** _buffer);
net_buffer* Dequeue(bool clone);
status_t BlockingDequeue(bool peek, bigtime_t timeout,
net_buffer** _buffer);
void Clear();
bool IsEmpty() const { return fBuffers.IsEmpty(); }
ssize_t AvailableData() const;
void WakeAll();
void NotifyOne();
protected:
virtual status_t SocketStatus(bool peek) const;
private:
status_t _Enqueue(net_buffer* buffer);
net_buffer* _Dequeue(bool peek);
void _Clear();
status_t _Wait(bigtime_t timeout);
void _NotifyOneReader(bool notifySocket);
bigtime_t _SocketTimeout(uint32 flags) const;
protected:
typedef typename LockingBase::Type LockType;
typedef typename LockingBase::AutoLocker AutoLocker;
typedef DoublyLinkedListCLink<net_buffer> NetBufferLink;
typedef DoublyLinkedList<net_buffer, NetBufferLink> BufferList;
sem_id fNotify;
BufferList fBuffers;
size_t fCurrentBytes;
mutable LockType fLock;
};
#define DECL_DATAGRAM_SOCKET(args) \
template<typename LockingBase, typename ModuleBundle> args \
DatagramSocket<LockingBase, ModuleBundle>
DECL_DATAGRAM_SOCKET(inline)::DatagramSocket(const char* name,
net_socket* socket)
:
ProtocolSocket(socket), fCurrentBytes(0)
{
status_t status = LockingBase::Init(&fLock, name);
if (status != B_OK)
fNotify = status;
else
fNotify = create_sem(0, name);
}
DECL_DATAGRAM_SOCKET(inline)::~DatagramSocket()
{
_Clear();
delete_sem(fNotify);
LockingBase::Destroy(&fLock);
}
DECL_DATAGRAM_SOCKET(inline status_t)::InitCheck() const
{
return fNotify >= 0 ? B_OK : fNotify;
}
DECL_DATAGRAM_SOCKET(inline status_t)::Enqueue(net_buffer* buffer)
{
AutoLocker _(fLock);
return _Enqueue(buffer);
}
DECL_DATAGRAM_SOCKET(inline status_t)::EnqueueClone(net_buffer* _buffer)
{
AutoLocker _(fLock);
net_buffer* buffer = ModuleBundle::Buffer()->clone(_buffer, false);
if (buffer == NULL)
return B_NO_MEMORY;
status_t status = _Enqueue(buffer);
if (status != B_OK)
ModuleBundle::Buffer()->free(buffer);
return status;
}
DECL_DATAGRAM_SOCKET(inline status_t)::Dequeue(uint32 flags,
net_buffer** _buffer)
{
if ((flags & ~(MSG_DONTWAIT | MSG_PEEK)) != 0)
return EOPNOTSUPP;
return BlockingDequeue((flags & MSG_PEEK) != 0, _SocketTimeout(flags),
_buffer);
}
DECL_DATAGRAM_SOCKET(inline net_buffer*)::Dequeue(bool peek)
{
AutoLocker _(fLock);
return _Dequeue(peek);
}
DECL_DATAGRAM_SOCKET(inline status_t)::BlockingDequeue(bool peek,
bigtime_t timeout, net_buffer** _buffer)
{
AutoLocker _(fLock);
bool waited = false;
while (fBuffers.IsEmpty()) {
status_t status = SocketStatus(peek);
if (status != B_OK) {
if (peek)
_NotifyOneReader(false);
return status;
}
status = _Wait(timeout);
if (status != B_OK)
return status;
waited = true;
}
*_buffer = _Dequeue(peek);
if (peek && waited) {
// There is a new buffer in the list; but since we are only peeking,
// notify the next waiting reader.
_NotifyOneReader(false);
}
if (*_buffer == NULL)
return B_NO_MEMORY;
return B_OK;
}
DECL_DATAGRAM_SOCKET(inline void)::Clear()
{
AutoLocker _(fLock);
_Clear();
}
DECL_DATAGRAM_SOCKET(inline ssize_t)::AvailableData() const
{
AutoLocker _(fLock);
status_t status = SocketStatus(true);
if (status < B_OK)
return status;
return fCurrentBytes;
}
DECL_DATAGRAM_SOCKET(inline void)::WakeAll()
{
release_sem_etc(fNotify, 0, B_RELEASE_ALL);
}
DECL_DATAGRAM_SOCKET(inline void)::NotifyOne()
{
release_sem_etc(fNotify, 1, B_RELEASE_IF_WAITING_ONLY
| B_DO_NOT_RESCHEDULE);
}
DECL_DATAGRAM_SOCKET(inline status_t)::SocketStatus(bool peek) const
{
if (peek)
return fSocket->error;
status_t status = fSocket->error;
fSocket->error = B_OK;
return status;
}
DECL_DATAGRAM_SOCKET(inline status_t)::_Enqueue(net_buffer* buffer)
{
if (fSocket->receive.buffer_size > 0
&& (fCurrentBytes + buffer->size) > fSocket->receive.buffer_size)
return ENOBUFS;
fBuffers.Add(buffer);
fCurrentBytes += buffer->size;
_NotifyOneReader(true);
return B_OK;
}
DECL_DATAGRAM_SOCKET(inline net_buffer*)::_Dequeue(bool peek)
{
if (fBuffers.IsEmpty())
return NULL;
if (peek)
return ModuleBundle::Buffer()->clone(fBuffers.Head(), false);
net_buffer* buffer = fBuffers.RemoveHead();
fCurrentBytes -= buffer->size;
return buffer;
}
DECL_DATAGRAM_SOCKET(inline void)::_Clear()
{
BufferList::Iterator it = fBuffers.GetIterator();
while (it.HasNext())
ModuleBundle::Buffer()->free(it.Next());
fCurrentBytes = 0;
}
DECL_DATAGRAM_SOCKET(inline status_t)::_Wait(bigtime_t timeout)
{
LockingBase::Unlock(&fLock);
status_t status = acquire_sem_etc(fNotify, 1, B_CAN_INTERRUPT
| (timeout != 0 ? B_ABSOLUTE_TIMEOUT : B_RELATIVE_TIMEOUT), timeout);
LockingBase::Lock(&fLock);
return status;
}
DECL_DATAGRAM_SOCKET(inline void)::_NotifyOneReader(bool notifySocket)
{
release_sem_etc(fNotify, 1, B_RELEASE_IF_WAITING_ONLY
| B_DO_NOT_RESCHEDULE);
if (notifySocket) {
ModuleBundle::Stack()->notify_socket(fSocket, B_SELECT_READ,
fCurrentBytes);
}
}
DECL_DATAGRAM_SOCKET(inline bigtime_t)::_SocketTimeout(uint32 flags) const
{
if ((flags & MSG_DONTWAIT) != 0)
return 0;
if (ModuleBundle::Stack()->is_restarted_syscall())
return ModuleBundle::Stack()->restore_syscall_restart_timeout();
bigtime_t timeout = fSocket->receive.timeout;
if (timeout != 0 && timeout != B_INFINITE_TIMEOUT)
timeout += system_time();
ModuleBundle::Stack()->store_syscall_restart_timeout(timeout);
return timeout;
}
#endif // PROTOCOL_UTILITIES_H