mirror of
https://review.haiku-os.org/haiku
synced 2025-02-01 11:15:59 +01:00
Ingo Weinhold
eb8dc1ebfb
* Removed DEBUG_PAGE_CACHE_TRANSITIONS debugging.
* Added VMCache::MovePage() and MoveAllPages() to move pages between caches. * VMAnonymousCache: - _MergeSwapPages(): Avoid doing anything, if neither cache has swapped out pages. - _MergeSwapPages() does now also remove source cache pages that are shadowed by consumer swap pages. This allows us to call _MergeSwapPages() before _MergePagesSmallerSource(), save the swap page shadowing check there and get rid of the vm_page::merge_swap flag. This is an optimization based on the assumption that usually none or only few pages are swapped out, so we save a lot of checks. - Implemented _MergePagesSmallerConsumer() as an alternative to _MergePagesSmallerSource(). The former is used when the source cache has more pages than the consumer cache. It iterates over the consumer cache's pages, moves them to the source and finally moves all pages back to the consumer. The final move is relatively cheap (though unfortunately we still have to update all pages' vm_page::cache field), so that overall we save iterations of the main loop with the more expensive checks. The optimizations particularly improve the common fork()+exec*() situations. fork() uses CoW, which is implemented by putting two new empty caches between the to be copied area and its cache. exec*() destroys one copy of the area, its cache and thus causes merging of the other new cache with the old cache. Since this usually happens in a very short time, the old cache does still contain many pages and the new cache only few. Previously the many pages were all checked and moved individually. Now we do that for the few pages instead. A very extreme example of this situation is the Haiku image build. jam has a huge heap (> 200 MB) and it fork()s+exec*()s for every action to be executed. Since during the cache merging the cache is locked, any write access to a heap page causes jam to block until the cache merging is done. Formerly that took so long that it killed a lot of parallelism in multi-job builds. That could be observed particularly well when lots of small actions where executed (like the Link, XRes, Mimeset, SetType, SetVersion combos when building executables/libraries/add-ons). Those look dramatically better now. The overall speed improvement for a -j8 image build on my machine is only about 15%, though. git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@34784 a95241bf-73f2-0310-859d-f6bbb57e9c96
…
Building on BeOS ================ For building on BeOS you need the development tools from: http://haiku-os.org/downloads Please always use the most recent versions. They are required to build Haiku. Building on a non-BeOS platform =============================== Please read the file 'ReadMe.cross-compile' before continuing. It describes how to build the cross-compilation tools and configure the build system for building Haiku. After following the instructions you can directly continue with the section Building. Configuring on BeOS =================== Open a Terminal and change to your Haiku trunk folder. To configure the build you can run configure like this: ./configure --target=TARGET Where "TARGET" is the target platform that the compiled code should run on: * haiku (default) * r5 * bone * dano (also for Zeta) The configure script generates a file named "BuildConfig" in the "generated/build" directory. As long as configure is not modified (!), there is no need to call it again. That is for re-building you only need to invoke jam (see below). If you don't update the source tree very frequently, you may want to execute 'configure' after each update just to be on the safe side. Building ======== Haiku can be built in either of two ways, as disk image file (e.g. for use with emulators) or as installation in a directory. Image File ---------- jam -q haiku-image This generates an image file named 'haiku.image' in your output directory under 'generated/'. VMware Image File ----------------- jam -q haiku-vmware-image This generates an image file named 'haiku.vmdk' in your output directory under 'generated/'. Directory Installation ---------------------- HAIKU_INSTALL_DIR=/Haiku jam -q install-haiku Installs all Haiku components into the volume mounted at "/Haiku" and automatically marks it as bootable. To create a partition in the first place use DriveSetup and initialize it to BFS. Note that installing Haiku in a directory only works as expected under BeOS, but it is not yet supported under Linux and other non-BeOS platforms. Bootable CD-ROM Image --------------------- This _requires_ having the mkisofs tool installed. On Debian GNU/Linux for example you can install it with: apt-get install mkisofs On BeOS you can get it from http://bebits.com/app/3964 along with cdrecord. This creates a bootable 'haiku-cd.iso' in your 'generated/' folder: jam -q haiku-cd Under Unix/Linux, and BeOS you can use cdrecord to create a CD with: cdrecord dev=x,y,z -v -eject -dao -data generated/haiku-cd.iso Here x,y,z is the device number as found with cdrecord -scanbus, it can also be a device path on Linux. Building Components ------------------- If you don't want to build the complete Haiku, but only a certain app/driver/etc. you can specify it as argument to jam, e.g.: jam Pulse Alternatively, you can 'cd' to the directory of the component you want to build and run 'jam' from there. You can also force rebuilding of a component by using the "-a" parameter: jam -a Pulse Running ======= Generally there are two ways of running Haiku. On real hardware using a partition and on emulated hardware using an emulator like Bochs or QEmu. On Real Hardware ---------------- If you have installed Haiku to its own partition you can include this partition in your bootmanager and try to boot Haiku like any other OS you have installed. To include a new partition in the BeOS bootmanager run this in a Terminal: bootman On Emulated Hardware -------------------- For emulated hardware you should build disk image (see above). How to setup this image depends on your emulater. A tutorial for Bochs on BeOS is below. If you use QEmu, you can usually just provide the path to the image as command line argument to the "qemu" executable. Bochs ----- Version 2.2 of Bochs for BeOS (BeBochs) can be downloaded from BeBits: http://www.bebits.com/app/3324 The package installs to: /boot/apps/BeBochs2.2 You have to set up a configuration for Bochs. You should edit the ".bochsrc" to include the following: ata0-master: type=disk, path="/path/to/haiku.image", cylinders=122, heads=16, spt=63 boot: disk Now you can start Bochs: $ cd /boot/apps/BeBochs2.2 $ ./bochs Answer with RETURN and with some patience you will see Haiku booting. If booting into the graphical evironment fails you can try to hit "space" at the very beginning of the boot process. The Haiku bootloader should then come up and you can select some safe mode options. Docbook documentation ===================== Our documentation can be found in 'src/documentation/'. You can build it by running 'jam' in that folder. The results will be stored in the 'generated/' folder.
Description
Languages
C++
52.2%
C
46.6%
Assembly
0.4%
HTML
0.3%
Python
0.1%