haiku/src/system/kernel/main.cpp
Alex Smith b8a9a3a160 Copied the x86 debug console functions to x86_64.
Note that this is only temporary so that I have serial output from the kernel,
the x86 and x86_64 versions will be merged later.
2012-06-26 11:42:28 +01:00

370 lines
10 KiB
C++

/*
* Copyright 2002-2010, Axel Dörfler, axeld@pinc-software.de.
* Distributed under the terms of the MIT License.
*
* Copyright 2001-2002, Travis Geiselbrecht. All rights reserved.
* Distributed under the terms of the NewOS License.
*/
/*! This is main - initializes the kernel and launches the Bootscript */
#include <string.h>
#include <FindDirectory.h>
#include <OS.h>
#include <arch/platform.h>
#include <boot_device.h>
#include <boot_item.h>
#include <boot_splash.h>
#include <commpage.h>
#include <condition_variable.h>
#include <cpu.h>
#include <debug.h>
#include <DPC.h>
#include <elf.h>
#include <fs/devfs.h>
#include <fs/KPath.h>
#include <int.h>
#include <kdevice_manager.h>
#include <kdriver_settings.h>
#include <kernel_daemon.h>
#include <kmodule.h>
#include <kscheduler.h>
#include <ksyscalls.h>
#include <ksystem_info.h>
#include <lock.h>
#include <low_resource_manager.h>
#include <messaging.h>
#include <Notifications.h>
#include <port.h>
#include <posix/realtime_sem.h>
#include <posix/xsi_message_queue.h>
#include <posix/xsi_semaphore.h>
#include <real_time_clock.h>
#include <sem.h>
#include <smp.h>
#include <team.h>
#include <timer.h>
#include <user_debugger.h>
#include <user_mutex.h>
#include <vfs.h>
#include <vm/vm.h>
#include <boot/kernel_args.h>
#include "vm/VMAnonymousCache.h"
//#define TRACE_BOOT
#ifdef TRACE_BOOT
# define TRACE(x...) dprintf("INIT: " x)
#else
# define TRACE(x...) ;
#endif
bool gKernelStartup = true;
bool gKernelShutdown = false;
static kernel_args sKernelArgs;
static uint32 sCpuRendezvous;
static uint32 sCpuRendezvous2;
static uint32 sCpuRendezvous3;
static int32 main2(void *);
extern "C" int
_start(kernel_args *bootKernelArgs, int currentCPU)
{
if (bootKernelArgs->kernel_args_size != sizeof(kernel_args)
|| bootKernelArgs->version != CURRENT_KERNEL_ARGS_VERSION) {
// This is something we cannot handle right now - release kernels
// should always be able to handle the kernel_args of earlier
// released kernels.
debug_early_boot_message("Version mismatch between boot loader and "
"kernel!\n");
return -1;
}
smp_set_num_cpus(bootKernelArgs->num_cpus);
// wait for all the cpus to get here
smp_cpu_rendezvous(&sCpuRendezvous, currentCPU);
// the passed in kernel args are in a non-allocated range of memory
if (currentCPU == 0)
memcpy(&sKernelArgs, bootKernelArgs, sizeof(kernel_args));
smp_cpu_rendezvous(&sCpuRendezvous2, currentCPU);
// do any pre-booting cpu config
cpu_preboot_init_percpu(&sKernelArgs, currentCPU);
thread_preboot_init_percpu(&sKernelArgs, currentCPU);
// if we're not a boot cpu, spin here until someone wakes us up
if (smp_trap_non_boot_cpus(currentCPU, &sCpuRendezvous3)) {
// init platform
arch_platform_init(&sKernelArgs);
// setup debug output
debug_init(&sKernelArgs);
set_dprintf_enabled(true);
dprintf("Welcome to kernel debugger output!\n");
dprintf("Haiku revision: %s\n", get_haiku_revision());
// init modules
TRACE("init CPU\n");
cpu_init(&sKernelArgs);
cpu_init_percpu(&sKernelArgs, currentCPU);
TRACE("init interrupts\n");
int_init(&sKernelArgs);
TRACE("init VM\n");
vm_init(&sKernelArgs);
// Before vm_init_post_sem() is called, we have to make sure that
// the boot loader allocated region is not used anymore
boot_item_init();
debug_init_post_vm(&sKernelArgs);
low_resource_manager_init();
// now we can use the heap and create areas
arch_platform_init_post_vm(&sKernelArgs);
lock_debug_init();
TRACE("init driver_settings\n");
driver_settings_init(&sKernelArgs);
debug_init_post_settings(&sKernelArgs);
TRACE("init notification services\n");
notifications_init();
TRACE("init teams\n");
team_init(&sKernelArgs);
TRACE("init ELF loader\n");
elf_init(&sKernelArgs);
TRACE("init modules\n");
module_init(&sKernelArgs);
TRACE("init semaphores\n");
haiku_sem_init(&sKernelArgs);
TRACE("init interrupts post vm\n");
int_init_post_vm(&sKernelArgs);
cpu_init_post_vm(&sKernelArgs);
commpage_init();
TRACE("init system info\n");
system_info_init(&sKernelArgs);
TRACE("init SMP\n");
smp_init(&sKernelArgs);
TRACE("init timer\n");
timer_init(&sKernelArgs);
TRACE("init real time clock\n");
rtc_init(&sKernelArgs);
timer_init_post_rtc();
TRACE("init condition variables\n");
condition_variable_init();
// now we can create and use semaphores
TRACE("init VM semaphores\n");
vm_init_post_sem(&sKernelArgs);
TRACE("init generic syscall\n");
generic_syscall_init();
smp_init_post_generic_syscalls();
TRACE("init scheduler\n");
scheduler_init();
TRACE("init threads\n");
thread_init(&sKernelArgs);
TRACE("init kernel daemons\n");
kernel_daemon_init();
arch_platform_init_post_thread(&sKernelArgs);
TRACE("init I/O interrupts\n");
int_init_io(&sKernelArgs);
TRACE("init VM threads\n");
vm_init_post_thread(&sKernelArgs);
low_resource_manager_init_post_thread();
TRACE("init DPC\n");
dpc_init();
TRACE("init VFS\n");
vfs_init(&sKernelArgs);
#if ENABLE_SWAP_SUPPORT
TRACE("init swap support\n");
swap_init();
#endif
TRACE("init POSIX semaphores\n");
realtime_sem_init();
xsi_sem_init();
xsi_msg_init();
// Start a thread to finish initializing the rest of the system. Note,
// it won't be scheduled before calling scheduler_start() (on any CPU).
TRACE("spawning main2 thread\n");
thread_id thread = spawn_kernel_thread(&main2, "main2",
B_NORMAL_PRIORITY, NULL);
resume_thread(thread);
// We're ready to start the scheduler and enable interrupts on all CPUs.
scheduler_enable_scheduling();
// bring up the AP cpus in a lock step fashion
TRACE("waking up AP cpus\n");
sCpuRendezvous = sCpuRendezvous2 = 0;
smp_wake_up_non_boot_cpus();
smp_cpu_rendezvous(&sCpuRendezvous, 0); // wait until they're booted
// exit the kernel startup phase (mutexes, etc work from now on out)
TRACE("exiting kernel startup\n");
gKernelStartup = false;
smp_cpu_rendezvous(&sCpuRendezvous2, 0);
// release the AP cpus to go enter the scheduler
TRACE("starting scheduler on cpu 0 and enabling interrupts\n");
scheduler_start();
enable_interrupts();
} else {
// lets make sure we're in sync with the main cpu
// the boot processor has probably been sending us
// tlb sync messages all along the way, but we've
// been ignoring them
arch_cpu_global_TLB_invalidate();
// this is run for each non boot processor after they've been set loose
cpu_init_percpu(&sKernelArgs, currentCPU);
smp_per_cpu_init(&sKernelArgs, currentCPU);
// wait for all other AP cpus to get to this point
smp_cpu_rendezvous(&sCpuRendezvous, currentCPU);
smp_cpu_rendezvous(&sCpuRendezvous2, currentCPU);
// welcome to the machine
scheduler_start();
enable_interrupts();
}
#ifdef TRACE_BOOT
// We disable interrupts for this dprintf(), since otherwise dprintf()
// would acquires a mutex, which is something we must not do in an idle
// thread, or otherwise the scheduler would be seriously unhappy.
disable_interrupts();
TRACE("main: done... begin idle loop on cpu %d\n", currentCPU);
enable_interrupts();
#endif
for (;;)
arch_cpu_idle();
return 0;
}
static int32
main2(void *unused)
{
(void)(unused);
TRACE("start of main2: initializing devices\n");
boot_splash_init(sKernelArgs.boot_splash);
commpage_init_post_cpus();
TRACE("init ports\n");
port_init(&sKernelArgs);
TRACE("init user mutex\n");
user_mutex_init();
TRACE("init system notifications\n");
system_notifications_init();
TRACE("Init modules\n");
boot_splash_set_stage(BOOT_SPLASH_STAGE_1_INIT_MODULES);
module_init_post_threads();
// init userland debugging
TRACE("Init Userland debugging\n");
init_user_debug();
// init the messaging service
TRACE("Init Messaging Service\n");
init_messaging_service();
/* bootstrap all the filesystems */
TRACE("Bootstrap file systems\n");
boot_splash_set_stage(BOOT_SPLASH_STAGE_2_BOOTSTRAP_FS);
vfs_bootstrap_file_systems();
TRACE("Init Device Manager\n");
boot_splash_set_stage(BOOT_SPLASH_STAGE_3_INIT_DEVICES);
device_manager_init(&sKernelArgs);
TRACE("Add preloaded old-style drivers\n");
legacy_driver_add_preloaded(&sKernelArgs);
int_init_post_device_manager(&sKernelArgs);
TRACE("Mount boot file system\n");
boot_splash_set_stage(BOOT_SPLASH_STAGE_4_MOUNT_BOOT_FS);
vfs_mount_boot_file_system(&sKernelArgs);
#if ENABLE_SWAP_SUPPORT
TRACE("swap_init_post_modules\n");
swap_init_post_modules();
#endif
// CPU specific modules may now be available
boot_splash_set_stage(BOOT_SPLASH_STAGE_5_INIT_CPU_MODULES);
cpu_init_post_modules(&sKernelArgs);
TRACE("vm_init_post_modules\n");
boot_splash_set_stage(BOOT_SPLASH_STAGE_6_INIT_VM_MODULES);
vm_init_post_modules(&sKernelArgs);
TRACE("debug_init_post_modules\n");
debug_init_post_modules(&sKernelArgs);
TRACE("device_manager_init_post_modules\n");
device_manager_init_post_modules(&sKernelArgs);
boot_splash_set_stage(BOOT_SPLASH_STAGE_7_RUN_BOOT_SCRIPT);
boot_splash_uninit();
// NOTE: We could introduce a syscall to draw more icons indicating
// stages in the boot script itself. Then we should not free the image.
// In that case we should copy it over to the kernel heap, so that we
// can still free the kernel args.
// The boot splash screen is the last user of the kernel args.
// Note: don't confuse the kernel_args structure (which is never freed)
// with the kernel args ranges it contains (and which are freed here).
vm_free_kernel_args(&sKernelArgs);
// start the init process
{
KPath bootScriptPath;
status_t status = find_directory(B_SYSTEM_BOOT_DIRECTORY, gBootDevice,
false, bootScriptPath.LockBuffer(), bootScriptPath.BufferSize());
if (status != B_OK)
dprintf("main2: find_directory() failed: %s\n", strerror(status));
bootScriptPath.UnlockBuffer();
status = bootScriptPath.Append("/Bootscript");
if (status != B_OK) {
dprintf("main2: constructing path to Bootscript failed: "
"%s\n", strerror(status));
}
const char *args[] = { "/bin/sh", bootScriptPath.Path(), NULL };
int32 argc = 2;
thread_id thread;
thread = load_image(argc, args, NULL);
if (thread >= B_OK) {
resume_thread(thread);
TRACE("Bootscript started\n");
} else
dprintf("error starting \"%s\" error = %" B_PRId32 " \n", args[0], thread);
}
return 0;
}