mirror of
https://review.haiku-os.org/haiku
synced 2025-01-20 21:41:28 +01:00
Axel Dörfler
82aa535b3f
Updated app_server Jamfile to be able to build a server that runs under Haiku
if $TARGET_PLATFORM requires this. Note, "jam app_server" for R5 did not work for me before and does not work now although the number of errors are reduced - whoever knows the requirements for the app_server under R5 better than me, please fix this. Added the app_server as well as some more drivers to the Haiku HD image. Since RUN_WITHOUT_APP_SERVER is still defined, it won't work correctly, though. For the time being, you need to manually alter this and the Bootscript in order to run it. git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@12121 a95241bf-73f2-0310-859d-f6bbb57e9c96
…
…
NOTE: the information in this file is tremendously outdated. The preferred method to build Haiku (currently only possible on a BeOS machine) is this (when you're in the "current" directory): $ configure $ makehdimage /Haiku Where /Haiku is the (mounted) partition of where you want to install Haiku on. If the parameter is omitted, the makehdimage script needs the Userland FS Server from Ingo Weinhold (see that script for more information), and will create a file named haiku.image that contains a working image of Haiku. Go bug us to update this file for real! Building -------- The build system uses Jam/MR (http://www.perforce.com/jam/jam.html). A BeOS executable of Jam 2.4 is available at: http://open-beos.sf.net/misc/jam.zip Unzip the executable and copy it to /boot/home/config/bin. The Jam source code is also included in the source tree. You can as well cd into "src/tools/jam" and run "make" to obtain an executable. To build the whole source tree, launch a Terminal, cd into the openbeos root directory and just type: $ ./configure $ jam The configure script generates a file named BuildConfig. As long as configure is not modified (!), there is no need to call it again. That is for re-building you only need to invoke Jam. If you don't update the source tree very frequently, you may want to execute configure after each update just to be on the safe side. NOTE: If you have checked out the latest CVS version, it is not unlikely that some parts of the tree won't build. Running ------- If the build went fine, a file named floppy.x86 had been created in the target specific objects directory (objects/x86.R1 for x86 machines). What you want to do now, is to boot from this floppy image. Therefore you either write the image onto a real floppy disk and restart you computer, or you write it onto a "virtual floppy disk" emulated by a x86 PC emulator and just start this emulator. 1. Real Floppy Put in the disk and type in the source tree's root dir: $ dd if=objects/x86.R1/floppy.x86 of=/dev/disk/floppy/raw bs=18k 2. Emulated Floppy (Bochs) Type: $ dd if=objects/x86.R1/floppy.x86 of=<floppy image> bs=18k where <floppy image> has to be replaced with the filename of the floppy image Bochs has been told to use (e.g. /tmp/obos.img). For both cases there is also an simpler way: $ jam installfloppy This builds the floppy image, if it is not up to date, and writes it to a previously specified location. Therefore you must tell configure where this location is: $ ./configure --floppy /dev/disk/floppy/raw Ananlogously for the emulated floppy. Bochs ----- Version 1.4 of Bochs for BeOS (BeBochs) can be downloaded from BeBits: http://www.bebits.com/app/2902 The package installs to: /boot/apps/BeBochs1.4 You have to set up a configuration for Bochs. A relatively short and painless procedure follows: Lauch a Terminal: $ cd /tmp $ /boot/apps/BeBochs1.4/bximage Answer with "fd", RETURN (for 1.44) and "obos.img", and a floppy image /tmp/obos.img will be created. Open folder /boot/apps/BeBochs1.4 and backup .bochsrc. Open .bochsrc with your favorite text editor, remove the complete contents and paste the following instead (you may as well take the original file and insert/replace/ keep the respective lines): romimage: file=bios/BIOS-bochs-latest, address=0xf0000 megs: 32 vgaromimage: bios/VGABIOS-elpin-2.40 floppya: 1_44=/tmp/obos.img, status=inserted boot: a log: /var/log/bochs-obos.log panic: action=ask error: action=report info: action=report debug: action=ignore vga_update_interval: 300000 keyboard_serial_delay: 250 keyboard_paste_delay: 100000 floppy_command_delay: 500 ips: 2000000 Now put the OBOS boot image onto you "virtual" floppy and start Bochs: $ cd <OBOS sources directory> $ jam installfloppy $ cd /boot/apps/BeBochs1.4 $ ./bochs Answer three times with RETURN and with some patience you will see OBOS booting.
Description
Languages
C++
52.2%
C
46.6%
Assembly
0.4%
HTML
0.3%
Python
0.1%