Stephan Aßmus 38287e02af * completed my changes to DrawState handling, the current DrawingState
of the active ViewLayer is now always mirrored in the Painter instance
  of a ServerWindow, so that it doesn't need to be synced on every drawing
  command, this was previously incomplete for font handling
* removed the DrawState parameter from all the DrawingEngine functions
* adjusted ServerWindow and ServerPicture accordingly
* made sure that string related functions used by non-drawing related
  parts (ServerApp, Decorator) don't interfere with the current drawing
  state
* moved AS_SYNC handling from _DispatchViewMessage to _DispatchMessage,
  it is actually a window message and doesn't require fCurrentLayer to
  be valid
* fixed bug #1300, fCurrentLayer was not updated when a ViewLayer was
  deleted by client request which happened to be fCurrentLayer (I am now
  handling it so that the parent becomes the current layer, could be
  wrong)
* AGGTextRenderer is no longer using it's own scanline, which should save
  a few bytes RAM, the Painter already had such an object
* StringWidth() in AGGTextRenderer is now taking the escapement_delta into
  account
* Painter::StrokeLine() doesn't need to check the clipping as much, since
  that is already done in DrawingEngine
* if a ServerWindow message is not handled because fCurrentLayer is NULL,
  a reply is sent in case the messages needs it (client window could
  freeze otherwise, waiting for the reply for ever)
* removed unused AS_SET_FONT and AS_SET_FONT_SIZE
* added automatic RGBColor -> rgb_color conversion to RGBColor.h
* minor cleanup for 80 char/line limit



git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@21685 a95241bf-73f2-0310-859d-f6bbb57e9c96
2007-07-22 19:48:27 +00:00
2007-07-16 21:47:13 +00:00

Building on BeOS
================

For building on BeOS you need the development tools from:

  http://haiku-os.org/downloads

Please always use the most recent versions. They are required to build Haiku.


Building on a non-BeOS platform
===============================

Please read the file 'ReadMe.cross-compile' before continuing. It describes
how to build the cross-compilation tools and configure the build system for
building Haiku. After following the instructions you can directly continue
with the section Building.


Configuring on BeOS
===================

Open a Terminal and change to your Haiku trunk folder. To configure the build
you can run configure like this:

  ./configure --target=TARGET

Where "TARGET" is the target platform that the compiled code should run on:
  * haiku (default)
  * r5
  * bone
  * dano (also for Zeta)

The configure script generates a file named "BuildConfig" in the "build"
directory. As long as configure is not modified (!), there is no need to call
it again. That is for re-building you only need to invoke jam (see below).
If you don't update the source tree very frequently, you may want to execute
'configure' after each update just to be on the safe side.


Building
========

Haiku can be built in either of two ways, as disk image file (e.g. for use
with emulators) or as installation in a directory.

Image File
----------

  jam -q haiku-image

This generates an image file named 'haiku.image' in your output directory
under 'generated/'.

VMware Image File
-----------------

  jam -q haiku-vmware-image

This generates an image file named 'haiku.vmdk' in your output
directory under 'generated/'.

Directory Installation
----------------------

  HAIKU_INSTALL_DIR=/Haiku jam -q install-haiku

Installs all Haiku components into the volume mounted at "/Haiku" and
automatically marks it as bootable. To create a partition in the first place
use DriveSetup and initialize it to BFS.

Note that installing Haiku in a directory only works as expected under BeOS,
but it is not yet supported under Linux and other non-BeOS platforms.

Building Components
-------------------

If you don't want to build the complete Haiku, but only a certain
app/driver/etc. you can specify it as argument to jam, e.g.:

  jam Pulse

Alternatively, you can 'cd' to the directory of the component you want to
build and run 'jam' from there.

You can also force rebuilding of a component by using the "-a" parameter:

  jam -a Pulse


Running
=======

Generally there are two ways of running Haiku. On real hardware using a
partition and on emulated hardware using an emulator like Bochs or QEmu.

On Real Hardware
----------------

If you have installed Haiku to its own partition you can include this
partition in your bootmanager and try to boot Haiku like any other OS you
have installed. To include a new partition in the BeOS bootmanager run this
in a Terminal:

  bootman

On Emulated Hardware
--------------------

For emulated hardware you should build disk image (see above). How to setup
this image depends on your emulater. A tutorial for Bochs on BeOS is below.
If you use QEmu, you can usually just provide the path to the image as
command line argument to the "qemu" executable.

Bochs
-----

Version 2.2 of Bochs for BeOS (BeBochs) can be downloaded from BeBits:

  http://www.bebits.com/app/3324

The package installs to: /boot/apps/BeBochs2.2

You have to set up a configuration for Bochs. You should edit the ".bochsrc" to
include the following:

ata0-master: type=disk, path="/path/to/haiku.image", cylinders=122, heads=16, spt=63
boot: disk

Now you can start Bochs:

  $ cd /boot/apps/BeBochs2.2
  $ ./bochs

Answer with RETURN and with some patience you will see Haiku booting.
If booting into the graphical evironment fails you can try to hit "space" at the
very beginning of the boot process. The Haiku bootloader should then come up and
you can select some safe mode options.


Docbook documentation
=====================

Our documentation can be found in 'src/documentation/'. You can build it by
running 'jam' in that folder. The results will be stored in the 'generated/'
folder.
Description
The Haiku operating system
Readme 558 MiB
Languages
C++ 52.2%
C 46.6%
Assembly 0.4%
HTML 0.3%
Python 0.1%