Ingo Weinhold 360be1fc45 * Implemented support for chroot:
- Added a "root" vnode to the io_context. It is used for resolving
    paths and converting nodes to paths instead of sRoot. Some more
    passing around of io_context structures was necessary.
  - Introduced a new lock sIOContextRootLock to protect
    io_context::root. The current uses of io_context::io_mutex
    (put_vnode(), remove_vnode() while holding it) looked too suspicious
    to use that mutex in vnode_path_to_vnode().
  - Added _kern_change_root() syscall and chroot() libroot function.
  - Added chroot coreutils program to the image. Funnily it seems to be
    much easier to set up a little jail than under Linux (just copy
    bash and libroot.so into respective subdirs; mount another pipefs
    if you want pipe support).
    With Haiku allowing direct access to directories via inode IDs
    jailing is obviously not very secure at the moment.
  - Added /var/empty to the image. It will be the chroot target for ssh.
* Changed vfs.cpp:get_cwd() so that the io_context::io_mutex is no
  longer held when calling dir_vnode_to_path().


git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@24673 a95241bf-73f2-0310-859d-f6bbb57e9c96
2008-03-30 05:59:54 +00:00
2008-03-12 17:23:01 +00:00
2008-03-30 05:59:54 +00:00
2008-03-30 05:59:54 +00:00
2008-03-30 05:59:54 +00:00

Building on BeOS
================

For building on BeOS you need the development tools from:

  http://haiku-os.org/downloads

Please always use the most recent versions. They are required to build Haiku.


Building on a non-BeOS platform
===============================

Please read the file 'ReadMe.cross-compile' before continuing. It describes
how to build the cross-compilation tools and configure the build system for
building Haiku. After following the instructions you can directly continue
with the section Building.


Configuring on BeOS
===================

Open a Terminal and change to your Haiku trunk folder. To configure the build
you can run configure like this:

  ./configure --target=TARGET

Where "TARGET" is the target platform that the compiled code should run on:
  * haiku (default)
  * r5
  * bone
  * dano (also for Zeta)

The configure script generates a file named "BuildConfig" in the "build"
directory. As long as configure is not modified (!), there is no need to call
it again. That is for re-building you only need to invoke jam (see below).
If you don't update the source tree very frequently, you may want to execute
'configure' after each update just to be on the safe side.


Building
========

Haiku can be built in either of two ways, as disk image file (e.g. for use
with emulators) or as installation in a directory.

Image File
----------

  jam -q haiku-image

This generates an image file named 'haiku.image' in your output directory
under 'generated/'.

VMware Image File
-----------------

  jam -q haiku-vmware-image

This generates an image file named 'haiku.vmdk' in your output
directory under 'generated/'.

Directory Installation
----------------------

  HAIKU_INSTALL_DIR=/Haiku jam -q install-haiku

Installs all Haiku components into the volume mounted at "/Haiku" and
automatically marks it as bootable. To create a partition in the first place
use DriveSetup and initialize it to BFS.

Note that installing Haiku in a directory only works as expected under BeOS,
but it is not yet supported under Linux and other non-BeOS platforms.

Bootable CD-ROM Image
---------------------

* UNSUPPORTED yet *

This _requires_ having the mkisofs tool installed.
On Debian GNU/Linux for example you can install it with:
  apt-get install mkisofs
On BeOS you can get it from http://bebits.com/app/3964 along with cdrecord.

Creating a bootable CD requires burning 2 tracks on a single CD.
The first track is an El-Torito bootable ISO file-system containing a boot 
floppy image, and is created with:

  jam -q haiku-boot-cd

This generates an image file named 'haiku-boot-cd.iso' in your output directory
under 'generated/'.
The second track is the raw BFS image 'haiku.image' in 'generated/' created 
with:

  jam -q haiku-image

Under Unix/Linux, and BeOS you can use cdrecord to create a CD with:

  cdrecord dev=x,y,z -v -eject -dao -data generated/haiku-boot-cd.iso generated/haiku.image

Here x,y,z is the device number as found with cdrecord -scanbus, it can also 
be a device path on Linux.

Windows users will find '3rdparty/nero/haiku-cd.cue' useful.

Since the CD has two tracks it is not easy to test it from an emulator.
Instead it is simpler to use the 'haiku.image' as CD image and the floppy
image 'haiku-boot-floppy.image' to boot from it.

For Qemu:

qemu -cdrom generated/haiku.image -fda generated/haiku-boot-floppy.image -boot a

Building Components
-------------------

If you don't want to build the complete Haiku, but only a certain
app/driver/etc. you can specify it as argument to jam, e.g.:

  jam Pulse

Alternatively, you can 'cd' to the directory of the component you want to
build and run 'jam' from there.

You can also force rebuilding of a component by using the "-a" parameter:

  jam -a Pulse


Running
=======

Generally there are two ways of running Haiku. On real hardware using a
partition and on emulated hardware using an emulator like Bochs or QEmu.

On Real Hardware
----------------

If you have installed Haiku to its own partition you can include this
partition in your bootmanager and try to boot Haiku like any other OS you
have installed. To include a new partition in the BeOS bootmanager run this
in a Terminal:

  bootman

On Emulated Hardware
--------------------

For emulated hardware you should build disk image (see above). How to setup
this image depends on your emulater. A tutorial for Bochs on BeOS is below.
If you use QEmu, you can usually just provide the path to the image as
command line argument to the "qemu" executable.

Bochs
-----

Version 2.2 of Bochs for BeOS (BeBochs) can be downloaded from BeBits:

  http://www.bebits.com/app/3324

The package installs to: /boot/apps/BeBochs2.2

You have to set up a configuration for Bochs. You should edit the ".bochsrc" to
include the following:

ata0-master: type=disk, path="/path/to/haiku.image", cylinders=122, heads=16, spt=63
boot: disk

Now you can start Bochs:

  $ cd /boot/apps/BeBochs2.2
  $ ./bochs

Answer with RETURN and with some patience you will see Haiku booting.
If booting into the graphical evironment fails you can try to hit "space" at the
very beginning of the boot process. The Haiku bootloader should then come up and
you can select some safe mode options.


Docbook documentation
=====================

Our documentation can be found in 'src/documentation/'. You can build it by
running 'jam' in that folder. The results will be stored in the 'generated/'
folder.
Description
The Haiku operating system
Readme 550 MiB
Languages
C++ 52.2%
C 46.6%
Assembly 0.4%
HTML 0.3%
Python 0.1%