Ingo Weinhold ed43619500 * vm_page: Swapped members usage_count and wired_count. We lost 4 bytes
due to alignment padding before.
* Reorganized merging of caches a bit. Renamed MergeStore() to Merge()
  and moved some more functionality into it. The method also moves the
  pages from source to consumer, now. This is necessary, since
  VMAnonymousCache needs to consider both physical pages and swap pages
  at the same time. Before we first moved the physical pages and the
  swap pages later, which was broken for two reasons: (1) A swap page in
  the consumer cache shadows a physical page of the source cache, which
  we ignored. (2) A source cache's physical page that also had a swap
  page would lose the latter in the process when moved to the consumer
  cache, i.e. if the page was not marked modified, it could be stolen
  and its data would be lost.

These changes improve the situation when building Haiku with 256 MB RAM
in that jam doesn't crash anymore, but in my test the system became
totally unusable after about an hour or 7000 targets (GUI froze). For
some reason it didn't manage to free pages anymore although swapping
heavily.


git-svn-id: file:///srv/svn/repos/haiku/haiku/trunk@27179 a95241bf-73f2-0310-859d-f6bbb57e9c96
2008-08-23 19:01:01 +00:00
2008-08-17 22:41:03 +00:00
2008-07-23 21:38:49 +00:00

Building on BeOS
================

For building on BeOS you need the development tools from:

  http://haiku-os.org/downloads

Please always use the most recent versions. They are required to build Haiku.


Building on a non-BeOS platform
===============================

Please read the file 'ReadMe.cross-compile' before continuing. It describes
how to build the cross-compilation tools and configure the build system for
building Haiku. After following the instructions you can directly continue
with the section Building.


Configuring on BeOS
===================

Open a Terminal and change to your Haiku trunk folder. To configure the build
you can run configure like this:

  ./configure --target=TARGET

Where "TARGET" is the target platform that the compiled code should run on:
  * haiku (default)
  * r5
  * bone
  * dano (also for Zeta)

The configure script generates a file named "BuildConfig" in the "build"
directory. As long as configure is not modified (!), there is no need to call
it again. That is for re-building you only need to invoke jam (see below).
If you don't update the source tree very frequently, you may want to execute
'configure' after each update just to be on the safe side.


Building
========

Haiku can be built in either of two ways, as disk image file (e.g. for use
with emulators) or as installation in a directory.

Image File
----------

  jam -q haiku-image

This generates an image file named 'haiku.image' in your output directory
under 'generated/'.

VMware Image File
-----------------

  jam -q haiku-vmware-image

This generates an image file named 'haiku.vmdk' in your output
directory under 'generated/'.

Directory Installation
----------------------

  HAIKU_INSTALL_DIR=/Haiku jam -q install-haiku

Installs all Haiku components into the volume mounted at "/Haiku" and
automatically marks it as bootable. To create a partition in the first place
use DriveSetup and initialize it to BFS.

Note that installing Haiku in a directory only works as expected under BeOS,
but it is not yet supported under Linux and other non-BeOS platforms.

Bootable CD-ROM Image
---------------------

* UNSUPPORTED yet *

This _requires_ having the mkisofs tool installed.
On Debian GNU/Linux for example you can install it with:
  apt-get install mkisofs
On BeOS you can get it from http://bebits.com/app/3964 along with cdrecord.

Creating a bootable CD requires burning 2 tracks on a single CD.
The first track is an El-Torito bootable ISO file-system containing a boot 
floppy image, and is created with:

  jam -q haiku-boot-cd

This generates an image file named 'haiku-boot-cd.iso' in your output directory
under 'generated/'.
The second track is the raw BFS image 'haiku.image' in 'generated/' created 
with:

  jam -q haiku-image

Under Unix/Linux, and BeOS you can use cdrecord to create a CD with:

  cdrecord dev=x,y,z -v -eject -dao -data generated/haiku-boot-cd.iso generated/haiku.image

Here x,y,z is the device number as found with cdrecord -scanbus, it can also 
be a device path on Linux.

Windows users will find '3rdparty/nero/haiku-cd.cue' useful.

Since the CD has two tracks it is not easy to test it from an emulator.
Instead it is simpler to use the 'haiku.image' as CD image and the floppy
image 'haiku-boot-floppy.image' to boot from it.

For Qemu:

qemu -cdrom generated/haiku.image -fda generated/haiku-boot-floppy.image -boot a

Building Components
-------------------

If you don't want to build the complete Haiku, but only a certain
app/driver/etc. you can specify it as argument to jam, e.g.:

  jam Pulse

Alternatively, you can 'cd' to the directory of the component you want to
build and run 'jam' from there.

You can also force rebuilding of a component by using the "-a" parameter:

  jam -a Pulse


Running
=======

Generally there are two ways of running Haiku. On real hardware using a
partition and on emulated hardware using an emulator like Bochs or QEmu.

On Real Hardware
----------------

If you have installed Haiku to its own partition you can include this
partition in your bootmanager and try to boot Haiku like any other OS you
have installed. To include a new partition in the BeOS bootmanager run this
in a Terminal:

  bootman

On Emulated Hardware
--------------------

For emulated hardware you should build disk image (see above). How to setup
this image depends on your emulater. A tutorial for Bochs on BeOS is below.
If you use QEmu, you can usually just provide the path to the image as
command line argument to the "qemu" executable.

Bochs
-----

Version 2.2 of Bochs for BeOS (BeBochs) can be downloaded from BeBits:

  http://www.bebits.com/app/3324

The package installs to: /boot/apps/BeBochs2.2

You have to set up a configuration for Bochs. You should edit the ".bochsrc" to
include the following:

ata0-master: type=disk, path="/path/to/haiku.image", cylinders=122, heads=16, spt=63
boot: disk

Now you can start Bochs:

  $ cd /boot/apps/BeBochs2.2
  $ ./bochs

Answer with RETURN and with some patience you will see Haiku booting.
If booting into the graphical evironment fails you can try to hit "space" at the
very beginning of the boot process. The Haiku bootloader should then come up and
you can select some safe mode options.


Docbook documentation
=====================

Our documentation can be found in 'src/documentation/'. You can build it by
running 'jam' in that folder. The results will be stored in the 'generated/'
folder.
Description
The Haiku operating system
Readme 553 MiB
Languages
C++ 52.2%
C 46.6%
Assembly 0.4%
HTML 0.3%
Python 0.1%