mirror of
https://review.haiku-os.org/haiku
synced 2025-02-02 11:46:25 +01:00
Augustin Cavalier
e7803cf1f6
Tracker: use the Layout API wherever possible.
Sorry this commit is so big, but I couldn't figure out how to do this incrementally without breaking things. I wasn't able to just merge Aldeck's branch, as it was a partial refactor of Tracker and didn't just rewrite the UI creation code to use layouts, and the changes for PM (e.g. addon loading, virtual directories) made it very hard to merge (it doesn't even compile after an automerge) so rather than spending time on that, I decided it'd be better to recreate his work. Miscellaneous notes: - This partially cleans up BPoseView & subclasses and BContainerWindow & subclasses -- none of the subclasses and child views abuse the parent's state, child views, or layout now. - BFilePanel and BDeskWindow are not on layouts, because: * BFilePanel docs in the Be Book instructed developers that wanted to modify BFilePanel's layout to just use FindView() and then move the views around. Obviously making it use layouts will break all BeOS apps that do this, and there are a lot of them (Pe, WonderBrush are just two examples.) I've added a note to the TODO list for R2 to create a layout-compatible API for this. * Some replicants (Workspaces, for example) rely on manipulating BDeskWindow's drawing state. This is incompatible with layouts, as at least in the case of Workspaces, it breaks a layouted version of BDeskWindow entirely. - I noticed a lot of #ifdef BEOS_VERSION ... gunk in the code. Tracker probably didn't build on BeOS just before this commit, and now it won't for sure, so I intend to go through and clean that out in the near future. This commit also fixes: - enhancement #4996 (make Tracker's navigator use vector icons) - bug #3039 (resizing OpenWithWindow flashes the blue border) - bug #3889 (OpenWithWindow redraw errors) - a regression that was a side effect of "dynamic_cast<BDeskWindow*>(this)" always returning NULL when run in the constructor. I just added a "bool isDeskWindow" to BContainerWindow's constructor that is only set to true by BDeskWindow. - a copy&paste error in VirtualDirectoryPoseView that was passing "uint32 resizeMode" as "uint32 viewMode". Thanks to Alexandre for his original branch (it was a very useful reference), Axel (for some miscellaneous advice & encouragement), Adrien & Humdinger (for user interface review), and Diver (for user interface review & testing).
Building Haiku from source ========================== This is a overview into the process of building HAIKU from source. An online version is available at http://www.haiku-os.org/guides/building/ Official releases of Haiku are at http://www.haiku-os.org/get-haiku The (unstable) nightly builds are available at http://www.haiku-files.org To build Haiku, you will need to * ensure pre-requisite software is installed * download sources * configure your build * run jam to initiate the build process We currently support these platforms: * Haiku * Linux * FreeBSD * Mac OS X Intel Pre-requisite software ====================== Tools provided within Haiku's repositories * Jam (Jam 2.5-haiku-20111222) * Haiku's cross-compiler (needed only for non-Haiku platforms) The tools to compile Haiku will vary, depending on the platform that you are using to build Haiku. When building from Haiku, all of the necessary development tools are included in official releases (e.g. R1 alpha 1) and in the (unstable) nightly builds. * Git client * SSH client (for developers with commit access) * gcc and the binutils (as, ld, etc., required by gcc) * make (GNU make) * bison * flex and lex (usually a mini shell script invoking flex) * makeinfo (part of texinfo, needed for building gcc 4 only) * autoheader (part of autoconf, needed for building gcc) * automake * gawk * nasm * wget * (un)zip * cdrtools (not genisoimage!) * case-sensitive file system Whether they are installed can be tested for instance by running them in the shell with the "--version" parameter. The following libraries (and their respective headers) are required: * curl * zlib Specific: Haiku for the ARM platform ------------------------------------ The following tools are needed to compile Haiku for the ARM platform * mkimage (http://www.denx.de/wiki/UBoot) * Mtools (http://www.gnu.org/software/mtools/intro.html) Specific: Mac OS X ------------------ Disk Utility can create a case-sensitive disk image of at least 3 GiB in size. The following darwin ports need to be installed: * expat * gawk * gettext * libiconv * gnuregex * gsed * cdrtools * nasm * wget * less * mpfr * gmp * libmpc More information about individual distributions of Linux and BSD can be found at http://haiku-os.org/guides/building/pre-reqs Download Haiku's sources ======================== There are two parts to Haiku's sources -- the code for Haiku itself and a set of build tools for compiling Haiku on an operating system other than Haiku. The buildtools are needed only for non-Haiku platform. Anonymous checkout: git clone git://git.haiku-os.org/haiku git clone git://git.haiku-os.org/buildtools Developer with commit access: git clone ssh://git.haiku-os.org/haiku git clone ssh://git.haiku-os.org/buildtools Building the Jam executable =========================== This step applies only to non-Haiku platforms. Change to the buildtools folder and we will start to build 'jam' which is a requirement for building Haiku. Run the following commands to generate and install the tool: cd buildtools/jam make sudo ./jam0 install -- or -- ./jam0 -sBINDIR=$HOME/bin install Configuring your build ====================== The configure script generates a file named "BuildConfig" in the "generated/build" directory. As long as configure is not modified (!) or the cross-compilation tools have been updated, there is no need to call it again. That is for re-building you only need to invoke jam (see below). If you don't update the source tree very frequently, you may want to execute 'configure' after each update just to be on the safe side. Depending on your goal, there are several different ways to configure Haiku. You can either call configure from within your Haiku trunk folder. That will prepare a folder named 'generated', which will contain the compiled objects. Another option is to manually created one or more 'generated.*' folders and run configure from within them. For example imagine the following directory setup buildtools-trunk/ haiku-trunk/ haiku-trunk/generated.x86gcc2 Configure a GCC 2.95 Hybrid, from non-Haiku platform ---------------------------------------------------- cd haiku-trunk/generated.x86gcc2 ../configure --use-xattr-ref \ --build-cross-tools x86_gcc2 ../../buildtools/ \ --build-cross-tools x86 Configure a GCC 2.95 Hybrid, from within Haiku ---------------------------------------------- cd haiku-trunk/generated.x86gcc2 ../configure --target-arch x86_gcc2 --target-arch x86 Additional information about GCC Hybrids can be found on the website, http://www.haiku-os.org/guides/building/gcc-hybrid Configure options ----------------- The various runtime options for configure are documented in its onscreen help ./configure --help Building via Jam ================ Haiku can be built in either of two ways, as disk image file (e.g. for use with emulators, to be written directly to a usb stick, burned as a compact disc) or as installation in a directory. Running Jam ----------- There are various ways in which you can run jam. * If you have a single generated folder, you can run 'jam' from the top level of Haiku's trunk. * If you have one or more generated folders, (e.g. generated.x86gcc2), you can cd into that directory and run 'jam' * In either case, you can cd into a certain folder in the source tree (e.g. src/apps/debugger) and run jam -sHAIKU_OUTPUT_DIR=<path to generated folder> Be sure to read build/jam/UserBuildConfig.ReadMe and UserBuildConfig.sample, as they contain information on customizing your build of Haiku. Building a Haiku anyboot file --------------------------- jam -q @anyboot-image This generates an image file named 'haiku-anyboot.image' in your output directory under 'generated/'. Building a VMware image file ---------------------------- jam -q @vmware-image This generates an image file named 'haiku.vmdk' in your output directory under 'generated/'. Directory Installation ---------------------- HAIKU_INSTALL_DIR=/Haiku jam -q @install Installs all Haiku components into the volume mounted at "/Haiku" and automatically marks it as bootable. To create a partition in the first place use DriveSetup and initialize it to BFS. Note that installing Haiku in a directory only works as expected under Haiku, but it is not yet supported under Linux and other non-Haiku platforms. Building individual components ------------------------------ If you don't want to build the complete Haiku, but only a certain app/driver/etc. you can specify it as argument to jam, e.g.: jam -q Debugger Alternatively, you can 'cd' to the directory of the component you want to build and run 'jam' from there. Note: if your generated directory named something other than "generated/", you will need to tell jam where it is. jam -q -sHAIKU_OUTPUT_DIR=<path to generated folder> You can also force rebuilding of a component by using the "-a" parameter: jam -qa Debugger Running ======= Generally there are two ways of running Haiku. On real hardware using a partition and on emulated hardware using an emulator like Bochs or QEMU. On Real Hardware ---------------- If you have installed Haiku to its own partition you can include this partition in your bootmanager and try to boot Haiku like any other OS you have installed. To include a new partition in the Haiku bootmanager run this in a Terminal: BootManager On Emulated Hardware -------------------- For emulated hardware you should build disk image (see above). How to setup this image depends on your emulater. If you use QEMU, you can usually just provide the path to the image as command line argument to the "qemu" executable. Docbook documentation ===================== Our documentation can be found in 'src/documentation/'. You can build it by running 'jam' in that folder. The results will be stored in the 'generated/' folder.
Description
Languages
C++
52.2%
C
46.6%
Assembly
0.4%
HTML
0.3%
Python
0.1%