
Learning to Program with Haiku

Lesson 2

Written by DarkWyrm

All material © 2010 DarkWyrm



Our first couple of programs weren't all that useful, but as we go along, you'll find that you can do 
more and more with your programs. This time around we're going to look at two main concepts: 
comments, and the different stages the compiler goes through to generate your program, and we'll also 
learn a little about debugging your code.

Comments are notes that you put into the code. They have many uses, such as clarifying a certain 
section of code, providing warnings, or temporarily disabling a section of code. See the below example 
for how they can be used.

// This is a one-line comment.
// So is this. Everything after the two forward slashes is considered part of it.

int main(void)
{

PushTheRedButton(); // This code doesn't work.
return 1;

}

Inherited from C is the multiline comment. They start with /* and end with */ in a way similar to 
parentheses or curly braces with one difference: you can't put a multiline comment inside another one.

/*-----------------------------------------------------------------------
RedButton.cpp

This code is an example of how the compiler will complain if you use
a function that it doesn't recognize.
------------------------------------------------------------------------*/

// This is a one-line comment.
// So is this. Everything after the two forward slashes is considered part of it.

int main(void)
{

PushTheRedButton(); // This code doesn't work.
return 1;

}

Now we're going to take a step back and look at the process the compiler goes through when building 
your program. This is important to understand because there are different kinds of errors that can be 
made when writing code and knowing something about the process will help you find them more 
easily.

When a program is built from source code, there are four tools that operate on it before it is an 
executable: the preprocessor, the compiler, the assembler, and the linker.

Stage 1: The Preprocessor

The preprocessor accepts raw source code as input and does a little massaging before the code is sent to 
the compiler. It removes comments and handles #include directives by inserting the contents of the 
included header file into the code. There are other directives which it handles that will be discussed 
later.



Stage 2: The Compiler

The compiler translates the C++ code into Assembly language. Assembly is much, much closer to the 
instructions which the computer understands while still being human-readable. It is also much harder to 
write programs and is specific to the processor for which it is written. 

Stage 3: The Assembler

The assembler creates object code from the Assembly code created by the compiler and places them in 
object files which have a .o extension. Object code is the actual machine-executable instructions used 
by the computer to run your program. It's not quite ready to run, however. In this state the object files 
used to make your program are a lot like a set of puzzle pieces that are ready to be put together.

Stage 4: The Linker

The linker pieces together your object files along with any libraries that they use into an executable 
program.

Debugging

By nature of programmers being human, they make mistakes and lots of them. Writing code and 
debugging go hand-in-hand and often done at the same time. As such, we will be learning about how to 
debug programs as we learn about writing them.

Bugs come in two types: syntactic and semantic. Syntactic bugs are easy to find because the compiler 
finds them for us. These are problems like capitalization errors, missing or extra parentheses, and 
mistyped function names. Semantic errors are often harder to find because they are errors in the logic 
of perfectly legal code. A semantic error in English would be “The oxygen censor on my car needed to 
be replaced” – the sentence is perfectly legal and correctly constructed, but the word needed is sensor, 
not censor. Examples of semantic errors are extra semicolons in certain places, adding the wrong 
amount to a number, and making assumptions about the return value of a function.

Let's take a look at a few simplified examples of common errors:

Example 1

Code

#include <stdio.h> 

int main(void) 
{ 

return 1;
} } 

Errors

foo.cpp:6: error: expected declaration before ‘}’ token



What we have here is an extra curly brace. gcc has given us a fairly cryptic error, as usual, but it has 
also given us two clues: the file name and the line number. The line number given by gcc and the 
actual location of the error are not always the same, but in this case they are.

At this point, you might be wondering, “What in the world is a token, genius?” A token is any language 
element. Just as a regular written language has words and punctuation, so do computer languages. Just 
as two commas in a row are a punctuation error in the English language, having an extra curly brace is 
a C++ punctuation error.

Example 2

Code

/*-----------------------------------------------------------------------
RedButton.cpp

/*This code is an example of how the compiler will complain if you use
a function that it doesn't recognize.*/

------------------------------------------------------------------------*/

// This is a one-line comment.
// So is this. Everything after the two forward slashes is considered part of it.

int main(void)
{

PushTheRedButton(); // This code doesn't work.
return 1;

}

Errors

foo.cpp:7: error: expected unqualified-id before ‘--’ token

This is an example of how the line number for the error is not the same place as the actual error. The 
complaint is about the dashes at the end of the multiline comment at the top. It is caused, however by 
nesting a multiline comment inside another one. The preprocessor removes all comments, so what the 
compiler sees is this:

------------------------------------------------------------------------*/

int main(void)
{

PushTheRedButton();
return 1;

}

The compiler doesn't know what to do with the dashed line and complains.



Example 3

Code

int Main(void)
{

return 1;
}

Errors

/usr/lib/gcc/i486-linux-gnu/4.4.1/../../../../lib/crt1.o: In function `_start': 
/build/buildd/eglibc-2.10.1/csu/../sysdeps/i386/elf/start.S:115: undefined 
reference to `main' 
/tmp/ccv39Cuo.o:(.eh_frame+0x12): undefined reference to `__gxx_personality_v0' 
collect2: ld returned 1 exit status

This is an error of a different kind. Remember that main() needs to be defined in every program? We 
didn't – we defined Main(). The program is otherwise valid, so it compiled just fine, but when the 
linker attempted to piece it all together, it couldn't find the one required function and threw a hissyfit. 
Any time you see an error containing undefined reference to, you have a linker error.

Resolving undefined reference linker errors isn't generally difficult. It usually means one of two 
things: you forgot to link in a library that you used, or a source code file was accidentally left out when 
your program was built.


