
Learning to Program with Haiku

Lesson 3

Written by DarkWyrm

All material © 2010 DarkWyrm

So far we've been learning about programming basics, such as how to write a function and how to start
looking for bugs in our code. This time we'll be learning about different types of data and ways to store
and pass it around.

There is only so much that can be done with direct manipulation like return 1 + 1; which is why we
have variables in programming. A variable is simply a storage container for information, and just like
any real world container, they come in different shapes, sizes, and uses.

Creating a variable is merely a matter of declaring its existence, as seen below.

#include <stdio.h>

int main(void)
{

// Declaring one integer variable named a
int a;

// Declaring two at once: b and c
int b, c;

a = 1;
b = 2;
c = 3;

// print out the values of our variables
printf("a is %d, b is %d, and c is %d.\n",a,b,c);

return a + b + c;
}

Variables can be declared one at a time, such as our variable a, or several at once, like b and c. In
addition to declaring variables for our use in functions, many times we'll get them for free because
many functions require input data to do their work. These variables are called parameters or
arguments.

Function parameters are declared both in a function's declaration and definition. They are listed in a
comma-separated list. Functions which do not take any arguments use the word void to say so.

// Declaration of a function with two arguments.
int SomeFunction(int someNumber, int anotherNumber);

// Definition of a function with two arguments.
int MultiplyNumbers(int value, int secondValue)
{

return value * secondValue;
}

// A function which needs no arguments. Must be a really peaceful one.
int main(void)
{

return MultiplyNumbers(2,3);
}

When we call a function with parameters, such as MultiplyNumbers() in the above example, we don't
list the type beside each one. The compiler keeps track of the types and warns us when we make
mistakes.

Speaking of types, there are more types of data than just integers in C++. Each type takes up a different
amount of space in memory, measured in bytes. This is important to remember because the number of
bytes a variable occupies has a direct impact on how much information it can hold. This difference is
evident in the range of values a char can hold as opposed to a short. Type sizes vary from platform to
platform, but here is a pretty good list for Haiku on a 32-bit processor.

Type Size (bytes) Range Description

char 1 -128 to 127 Letters – each char variable only holds 1
letter

unsigned
char

1 0 to 255 Letters – each char variable only holds 1
letter

short 2 –32,768 to 32,767 Whole numbers

unsigned
short

2 0 to 65, 535 Whole numbers

int 4 –2,147,483,648 to
2,147,483,647

Whole numbers

unsigned int 4 0 to 4,294,967,295 Whole numbers

long 4 –2,147,483,648 to
2,147,483,647

Whole numbers

long long 8 –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Whole numbers

unsigned
long long

8 0 to
18,446,744,073,709,551,615

Whole numbers

float 4 3.4E +/- 38 (7 digits) Numbers with a fractional part (floating
point)

double 8 1.7E +/- 308 (15 digits) Numbers with a fractional part (floating
point)

long double 12 Numbers with a fractional part (floating
point)

bool 1 True or false True or false

wchar_t 2 or 4 As either short or int “Wide” characters, which can support
international characters.. As with char,
each variable only holds 1 letter.

Using printf()

Now do you remember the weirdness that we saw a little bit ago with printf()? Let's take another
look at it.

#include <stdio.h>

int main(void)
{

int a;
int b, c;

a = 1;
b = 2;
c = 3;

printf("a is %d, b is %d, and c is %d.\n",a,b,c);

return a + b + c;
}

printf is one of a few functions which take a variable number of arguments. Its first parameter is
always a string. Depending on the number of placeholders in the string, though, it may or may not have
additional parameters following the string. For example, in our above example, the string has three %d
placeholders, one each for a, b, and c. Three placeholders, three “extra” parameters. Here are some
other possible placeholders for printf that we'll use later on. Note that this is not an exhaustive list to
printf – there are many more options, but these will suffice for now.

Placeholder Type Sample output

%c Character a

%d, %i Signed decimal integer 234

%e, %E Scientific notation using e/E 1.7e+5, 1.7E+5

%f Floating point number 3.14

%g Double precision number 3.14

%o Integer in octal notation 711

%u Unsigned integer 255

%x, %X Integer in hexadecimal notation 0xff, 0xFF

%% Percent sign %

Operators

Operators give us ways of working with variables and numbers without calling functions. +, -, and *
are all examples of operators, but C++ has many more than just these. Here are the arithmetic operators
that we'll need for now.

Operator Operation Description

a + b addition adds b to a

a - b subtraction subtracts b from a

a * b multiplication multiplies a by b

a / b division divides a by b

Operator Operation Description

a % b modulo the remainder of a / b

a = b assignment sets a to the value of b

++a pre-increment adds 1 to a before the rest of the expression is
evaluated

a++ post-increment adds 1 to a after the rest of the expression is
evaluated

--a pre-decrement subtracts 1 from a before the rest of the expression
is evaluated

a-- post-decrement subtracts 1 from a after the rest of the expression is
evaluated

a += b assign with addition Short for a = a + b

a -= b assign with subtraction Short for a = a - b

a *= b assign with
multiplication

Short for a = a * b

a /= b assign with division Short for a = a / b

a %= b assign with modulo Short for a = a % b

The -- and ++ operators need a little more explanation than is possible in the table. Let's take a look at
some code to explain it best.

#include <stdio.h>

int main(void)
{

int a = 1;
int b = 2;

// The result here will be 3 because we add 1 to a
// after a + b is calculated
printf("a++ + b = %d\n",a++ + b);

// Because we added 1 to a, this prints a 4.
printf("a + b = %d\n",a + b);

// This is 5 because the compiler will add 1 to a before calculating
// a + b
printf("++a + b = %d\n",++a + b);

return 0;
}

Whew! We covered a lot of stuff in this lesson, but using all of it let's us do all sorts of fancy stuff. Let's
put it to use.

#include <stdio.h>

// math.h gives us access to a lot of mathematical functions. We're
// including it here so we can access sqrt(), which calculates
// square roots.
#include <math.h>

double hypotenuse(int a, int b)
{

return sqrt((a*a) + (b*b));
}

int main(void)
{

int a = 3;
int b = 4;

printf("For the triangle with legs %d and %d, the hypotenuse will be %g\n",

a,b,hypotenuse(a,b));

return 0;

}

hypotenuse() returns a double because we want some sort of precision beyond whole numbers. It is
also the return type for sqrt().

Bug Hunt

Hunt #1

Code

int sum(int first, int second, int third)
{

return first + second + third;
}

int main(void)
{

int a = 3;
int b = 4;

printf("The sum is %d\n", sum(a,b,c));

return 0;

}

Errors

foo.cpp: In function ‘int main()’:
foo.cpp:14: error: ‘c’ was not declared in this scope

Hunt #2

Code

#include <stdio.h>

double distance(int x1, int y1, int x2, int y2)
{

int deltax = x2 - x1;
int deltay = y2 - y1;

return sqrt((deltax * deltax) + (deltay * deltay));

}

int main(void)
{

int x1,y1,x2,y2;

x1 = 3;
y1 = 3;

x2 = 8;
y2 = 3;

printf("The distance between (%d,%d) and (%d,%d) is %g\n", x1,y1, x2,y2,

distance(x1,y1,x2,y2));

return 0;

}

Errors

foo.cpp: In function ‘double distance(int, int, int, int)’:
foo.cpp:8: error: ‘sqrt’ was not declared in this scope

Project

Using the equation Interest = Principal * rate * time, calculate and print the simple interest incurred on
a principal of $20000 at a rate of 5% per month for 24 months. Use a function to do the actual interest
calculations.

