mirror of
https://review.haiku-os.org/buildtools
synced 2025-02-14 17:57:39 +01:00
5873a060ca
* these are dependencies for gcc 4 Graphite engine build. * CLooG 0.18.0 includes ISL 0.11.1 which is the backend that the build script enables. * PPL is needed by GCC build even if it isn't the chosen backend.
134 lines
3.2 KiB
C++
134 lines
3.2 KiB
C++
/* Test Polyhedron::is_disjoint_from(const Polyhedron& y).
|
|
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
|
|
Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)
|
|
|
|
This file is part of the Parma Polyhedra Library (PPL).
|
|
|
|
The PPL is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation; either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The PPL is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software Foundation,
|
|
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
|
|
|
|
For the most up-to-date information see the Parma Polyhedra Library
|
|
site: http://www.cs.unipr.it/ppl/ . */
|
|
|
|
#include "ppl_test.hh"
|
|
|
|
namespace {
|
|
|
|
NNC_Polyhedron
|
|
half_strip(const Generator& p,
|
|
const Linear_Expression& e,
|
|
bool closed = true) {
|
|
assert((p.is_point() && closed) || (p.is_closure_point() && ! closed));
|
|
|
|
Linear_Expression e1(p);
|
|
e1 += 3*Variable(0);
|
|
|
|
Generator_System gs;
|
|
gs.insert(p);
|
|
gs.insert(ray(e));
|
|
if (closed)
|
|
gs.insert(point(e1, p.divisor()));
|
|
else {
|
|
gs.insert(closure_point(e1, p.divisor()));
|
|
e1 -= Variable(0);
|
|
e1 += e.coefficient(Variable(1)) * p.divisor() * Variable(1);
|
|
gs.insert(point(e1));
|
|
}
|
|
NNC_Polyhedron ph(gs);
|
|
return ph;
|
|
}
|
|
|
|
bool
|
|
test01() {
|
|
Variable A(0);
|
|
Variable B(1);
|
|
|
|
NNC_Polyhedron ph1 = half_strip(point(A + B), B);
|
|
|
|
NNC_Polyhedron ph2(2, EMPTY);
|
|
ph2.add_generator(point(3*A + B));
|
|
ph2.add_generator(closure_point(2*A + B));
|
|
ph2.add_generator(closure_point(4*A + 3*B));
|
|
ph2.add_generator(ray(A - B));
|
|
|
|
bool disjoint = ph1.is_disjoint_from(ph2);
|
|
|
|
print_generators(ph1, "*** ph1 ***");
|
|
print_generators(ph2, "*** ph2 ***");
|
|
|
|
return !disjoint;
|
|
}
|
|
|
|
bool
|
|
test02() {
|
|
Variable A(0);
|
|
Variable B(1);
|
|
|
|
NNC_Polyhedron ph1 = half_strip(point(A + B), B);
|
|
NNC_Polyhedron ph2 = half_strip(closure_point(4*A + B), B, false);
|
|
|
|
bool disjoint = ph1.is_disjoint_from(ph2);
|
|
|
|
print_generators(ph1, "*** ph1 ***");
|
|
print_generators(ph2, "*** ph2 ***");
|
|
|
|
return disjoint;
|
|
}
|
|
|
|
bool
|
|
test03() {
|
|
Variable A(0);
|
|
Variable B(1);
|
|
|
|
NNC_Polyhedron ph1 = half_strip(point(A + B), B);
|
|
NNC_Polyhedron ph2 = half_strip(closure_point(A + B), -B, false);
|
|
|
|
bool disjoint = ph1.is_disjoint_from(ph2);
|
|
|
|
print_generators(ph1, "*** ph1 ***");
|
|
print_generators(ph2, "*** ph2 ***");
|
|
|
|
return disjoint;
|
|
}
|
|
|
|
bool
|
|
test04() {
|
|
Variable A(0);
|
|
Variable B(1);
|
|
|
|
NNC_Polyhedron ph1 = half_strip(point(), B);
|
|
|
|
NNC_Polyhedron ph2(2, EMPTY);
|
|
ph2.add_generator(point(-2*A - 2*B));
|
|
ph2.add_generator(closure_point(2*A - 2*B));
|
|
ph2.add_generator(closure_point(-2*A + 2*B));
|
|
ph2.add_generator(ray(-A - B));
|
|
|
|
bool disjoint = ph1.is_disjoint_from(ph2);
|
|
|
|
print_generators(ph1, "*** ph1 ***");
|
|
print_generators(ph2, "*** ph2 ***");
|
|
|
|
return disjoint;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
BEGIN_MAIN
|
|
DO_TEST(test01);
|
|
DO_TEST(test02);
|
|
DO_TEST(test03);
|
|
DO_TEST(test04);
|
|
END_MAIN
|