Jerome Duval 5873a060ca imported PPL 0.11.1 and CLooG 0.18.0.
* these are dependencies for gcc 4 Graphite engine build.
* CLooG 0.18.0 includes ISL 0.11.1 which is the backend that the build script enables.
* PPL is needed by GCC build even if it isn't the chosen backend.
2013-04-06 15:10:34 +02:00

134 lines
3.2 KiB
C++

/* Test Polyhedron::is_disjoint_from(const Polyhedron& y).
Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
Copyright (C) 2010-2011 BUGSENG srl (http://bugseng.com)
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */
#include "ppl_test.hh"
namespace {
NNC_Polyhedron
half_strip(const Generator& p,
const Linear_Expression& e,
bool closed = true) {
assert((p.is_point() && closed) || (p.is_closure_point() && ! closed));
Linear_Expression e1(p);
e1 += 3*Variable(0);
Generator_System gs;
gs.insert(p);
gs.insert(ray(e));
if (closed)
gs.insert(point(e1, p.divisor()));
else {
gs.insert(closure_point(e1, p.divisor()));
e1 -= Variable(0);
e1 += e.coefficient(Variable(1)) * p.divisor() * Variable(1);
gs.insert(point(e1));
}
NNC_Polyhedron ph(gs);
return ph;
}
bool
test01() {
Variable A(0);
Variable B(1);
NNC_Polyhedron ph1 = half_strip(point(A + B), B);
NNC_Polyhedron ph2(2, EMPTY);
ph2.add_generator(point(3*A + B));
ph2.add_generator(closure_point(2*A + B));
ph2.add_generator(closure_point(4*A + 3*B));
ph2.add_generator(ray(A - B));
bool disjoint = ph1.is_disjoint_from(ph2);
print_generators(ph1, "*** ph1 ***");
print_generators(ph2, "*** ph2 ***");
return !disjoint;
}
bool
test02() {
Variable A(0);
Variable B(1);
NNC_Polyhedron ph1 = half_strip(point(A + B), B);
NNC_Polyhedron ph2 = half_strip(closure_point(4*A + B), B, false);
bool disjoint = ph1.is_disjoint_from(ph2);
print_generators(ph1, "*** ph1 ***");
print_generators(ph2, "*** ph2 ***");
return disjoint;
}
bool
test03() {
Variable A(0);
Variable B(1);
NNC_Polyhedron ph1 = half_strip(point(A + B), B);
NNC_Polyhedron ph2 = half_strip(closure_point(A + B), -B, false);
bool disjoint = ph1.is_disjoint_from(ph2);
print_generators(ph1, "*** ph1 ***");
print_generators(ph2, "*** ph2 ***");
return disjoint;
}
bool
test04() {
Variable A(0);
Variable B(1);
NNC_Polyhedron ph1 = half_strip(point(), B);
NNC_Polyhedron ph2(2, EMPTY);
ph2.add_generator(point(-2*A - 2*B));
ph2.add_generator(closure_point(2*A - 2*B));
ph2.add_generator(closure_point(-2*A + 2*B));
ph2.add_generator(ray(-A - B));
bool disjoint = ph1.is_disjoint_from(ph2);
print_generators(ph1, "*** ph1 ***");
print_generators(ph2, "*** ph2 ***");
return disjoint;
}
} // namespace
BEGIN_MAIN
DO_TEST(test01);
DO_TEST(test02);
DO_TEST(test03);
DO_TEST(test04);
END_MAIN